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SHOCK WAVE DIFFRACTION ON A THIN WEDGE MOVING WITH A SLIP 

RESTIVE TO THE WAVE FRONT WITH IRREGULAR SHOCK INTERACTION* 

L. E. PEKUROVSKII 

The flow generated by the motion of a thin wedge through the front of a plane shock 
wave of arbitrary intensity is investigated, The shock wave front is at some side 
slip angle to the wedge edge and at an angle slightly different from the right angle 
to the wedge plane of symmetry. The wedge velocity relative to the gas upstream of 
the shock wave is supersonic. Interaction of the shock wave with the weak compres- 
sion shock attached to the wedge is assumed irregular. The range of input paramet- 
ers (angle of side slip, Mach numbers of the shock wave and wedge) are indicated 
for all possible flow patterns under these conditions. Solution of the plane prob- 
lem of shock wave diffraction over a thin wedge obtained by the author in /I/ is 
extended the case of three-dimensional flow. 

A similar generalization of solution of the problem of shock wave diffraction over a 
stationary thin wedge /2/ was first considered by Chester /3/. A solution of the same prob- 
lem as considered here, but under conditions of regular shock interaction was obtained by 
Smyrl /4/. 

The solution of this problem contains, as particular cases, solutions of plane problems 
of shock wave diffraction over a moving toward it thin wedge (at zero side slip angle) and 
over a thin wedge overtaking it when in the considered here general problem the side slip 

angle is n. 

1. Statement of the problem. Let a thin wedge move at constant supersonic veloc- 
ity in aquiescentperfect gas in which, independent of it, propagates at constant velocity a 
plane shock wave of arbitrary inte-$ity. Their relative motion in space depends on the direc- 
tion and magnitude of velocities -=aaoMm of the wedge and U = a&f of the shock wave 
front in the gulescentgas. The shock wave generates downstream of its front a stream of gas 
at constant velocity a,M, (a-and a, are the speeds of sound in the gas upstream and down- 
stream of the shock wave front, respectively). The particular case of encounter motion when 
the shock wave front is parallel to the wedge edge was investigated in /1,4/. Below , an 
arbitrary angle between the shock wave front and the wedge edge is admitted. When that angle 
is neither zero nor n, the wedge edge intersects the shock wave front at point 0 (Fig.11 
which moves simultaneously along the edge and in the front plane. Hence the part of the edge 
on one side of point 0 moves in the gas whose motion is induced by the shock wave, while the 

Fig.1 

edge on the other side of that point moves through quiescent gas, so that the above statement 
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on the motion of the wedge and the shock wave will now relate only to that part of space in 
which the motion is not yet complicated by the penetration of the wedge edge through the 
plane of the shock wave front. 

The fundamental parameters that define the flow are the Mach numbers M and M,, and 
the side slip angle fi defined as the angle between the plane of the front of the unperturbed 
shock wave and the part of the wedge edge which moves through the gas whose motion is generat- 
ed by the shock wave (Fig.1). As in /l/, we consider only flows in which the unperturbed 
shock wave front is at angle X = n/2 - 6 to the wedge plane of symmetry, which does not 
greatly differ from the right angle. The wedge motion reLative to the gas downstream of the 
shock wave is at a low angle of attack 6 and comprises side slip. The wedge half-aperture 
angle e is of the same order of magnitude as 6. 

In the reference system attached to point 0 the flow is stationary and the unperturbed 
shock wave may be considered as an oblique compression shock attached to some wedge whoseside 
passes through the gas velocity vector downstream of that oblique shock. The considered here 
flow is assumed to differ onlyslightlyfrom the motion of gas through such oblique compres- 
sion shock. Particles of gas in such motion upstream of the shock wave translate in planes 
perpendicular to its front (Fig.l,b) at velocity V, inclined to the shock wave front at the 
angle !3' and equal in magnitude to VW After passing through the shock wave the gas 
particle velocity becomes V,” and the angle between the vector of velocity V,” and the front 
becomes p. Formulas defining the quantities v,, B'. Vi". and p appear in /4/. 

The system of rectangular physical coordinates X,Y,Z has its origin at point 0, the 
Z -axis is directed along the projection of the gas velocity vector on the plane perpendicul- 

ar to the plane of the unperturbed shock wave front, and the Y-axis is perpendicular to it 
in the plane of the shock front (Fig.l,a). 

The absence of a characteristic dimension in the problem enables us to assume the flow 
to be conical. Only that range of input parameters is considered for which the uniform un- 
perturbed flow downstream of the shock wave considered in the selected reference system is 
supersonic, i.e. when V," > a,. 

The region of nonuniform flow appears to be bounded by the Mach cone OIBD’ , the wall, 
and the part OF'G'I of the shock front. The cone apex is at point 0 and its axis is direct- 
ed along vector V,", i.e. along the Z-axis. The formula defining angle a between the 
cone generatrix and its axis is given in /4/. The plane which passes through the wedge edge 
and is tangent to the pertubation cone represents the front of a weak compression or rarefac- 
tion wave. Between it, the cone, and the wedge surface lies the uniform flow region (5) whose 
parameters do not greatly differ from those of region (1) of the unperturbed flow downstream 
of the shock wave lying above the surface ONBI. 

The front of the weak compression shock attached to the wedge part situated ahead of the 
shock wave separates region (2) of the uniform flow parallel to the thin wedge surface from 
the region of the unperturbed uniform flow (cc) ahead of the shock wave. The following form- 
ulas: 

al=am i+8+* 

( 

vz=vo+ E&k ,), p*=p_(l+e++-), 

k= “‘$--). V, = V, {-sin (fJ' - p); 0; co.9 (fi’ - p)) 
m 

where x is the adiabatic exponent, hold for the dimensional values of the speed of sound aZr 
pressure pa, and the velocity vector V, in region (2) /4,5/. 

The points N, B, 2, F', and D'mentioned above lie in a plane normal to the Z-axis, 
and Fig.l,a corresponds to the case when point N of intersection of that plane with theedge 
lies downstream of the shock wave, i.e. when angle p-p between the velocity vector V,"and 
the part of the edge downstream of the shock wave is smaller than nl2, and, furthermore, 
when the wedge velocity relative to the gas downstream of the shock wave VW = a,Mlcos p + a, 
MI, is supersonic. Other patterns of flow are also possible, as shown in Fig.2 and 3. The 
dependence of the respective ranges of Mach numbers M and i%f, on angle p is considered in 
Sect.3. 

When the shock wave is of fairly high intensity owing to the increase of the speed of 
sound downstream of it at side slip angles p E [PI, n / 21 &depends on x), the wedge veloc- 
ity VW relative to that gas may become subsonic. Then region (5) vanishes, the leading edge 
part ON lying downstream of the shock wave finds itself inside the Mach cone (Fig.21, and 
the flows under and above the wedge cease to be independent. 

Wbenangle p>s/2, then at fairly high Mach numbers M, of the wedge we may find 
~~io~vangle fi -p> n/2. In that case point N of intersection of the plane normal to 

1" with the wedge edge lies upstream of the shock wave. The respective flow pattern 
is shown in Fig.3 for the case when the weak shock induced by the supersonic motion of the 
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wedge in the gas downstream of the shock wave, separating region (5) from (1) is tangent to 
the shown part of the Mach cone surface OD’B’I, and not of its continuationbeyond the line 
OZ. In the opposite case, as the result of its intersection with the shock wave, a reflected 
shock OLB, (the straight line OL is in the shock wave front plane at an angle to line OF 
which is greater than that between 01 and OF) tangent to the Mach cone is generated (Fig.3). 

Between this shock, the shock wave, and the cone surface 
a further uniform flow region (6) is created. In allcases 
of p--p>>/2 only such values of input parameters are 
considered for which velocity Vi is supersonic. 

The diffraction of a shock wave over a wedge is com- 
plicated in all of the considered cases by its interaction 
with the weak shock induced by the supersonic motion of 
the wedge in the gas upstream of the shock wave. Whether 
the wave interaction is regular of irregular can be deter- 
mined by projecting the velocity vector V," on line OG 

When the projectiop is larger or smaller th& the speed 
of sound, the interaction is, respectively regular or 
irregular. In the first case a weak rarefaction shock 

D tangent to the Mach cone is induced by the wave interact- 
ion. A solution of the respective boundary value problem 
for pressure, when the wedge velocity relative to the gas 

Fig.2 
downstream of the shock wave is supersonic and the angle 

B <n/2, was obtained in /4/. 
Below, we consider the irregular interaction of waves, 

when the line OG' of intersection of shocks is in the perturbed part OIF’ of the shock wave 
front. The surface of the weak tangential shock separates gas particles that have passed 
through part OIG',of the shock wave front from those that have first passed the weak compres- 
sion shock front and, then, through the part OG’F of the shock wave front. It was shown in 
/4/ that this surface does not affect the boundary value problem for pressure; it is not in- 
dicated in Figs. l-3. 

2. Self-similar coordinates. The limits of regularity. Analysis of the con- 
ical flow described above is carried out in a plane normal to the Z-axis. The position of 
the plane is chosen so that its intersection with the Mach cone is a circle of unit radius, 
with the corresponding dimensionless self-similar coordinates determined by formulas /3,4/ 

x=X/(Ztga), y=Y/(Ztgcq (2.1) 

Fig.3 

Using the formulas for V,“, p, and a it is possible to show that the introduced coordin- 
ates are transformed in self-similar coordinates as p-0 , which were used in the analysis 
of the plane nonstationary problem /1,4/. 

The cross sections of all three-dimensional flowpatternsby planes normal to the Z-axis 
are shown in Fig.4. Owing to the smallness of E and 6, section IF’ of the perturbed shock 
front is replaced there by segment IF of the straight line parallel to the y-axis and 
section D’F’ by segment DF 
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D s F N D x F N 

Fig.4 

Dependence of coordinates of the characteristic points I@,, y,), B(%, yl), /J (x0. 0). and 
G(s,, yr;) on the basic flow parameters is defined as follows: 

(2.2) 

These formulas also hold for the problem of regular wave interaction considered in /4/, 
but the formulas appearing there for yc and z1 are erroneous: the expression for yG (denot- 
ed in /4/ by 82 ) contains in the denominator the superflous multiplier cos*(@ - II) , and the 
formula for z1 is entirely wrong. 

The expression for ye can be resolved for I%,, and obtain by the same token the equa- 
tion of a set of curves in the coordinate plane M, M,, which, depending on parameter B, 
correspond to the specifed value of the coordinate ~0. In the particular case when point G 
coincides with point I, i.e. when ?dG = 90 I such curve (for a given angle fi) separates 
the region of variation of parameters Mand M, in two. One of these corresponds to the 
considered here irregular interactions (with yo <yO ), the other to regular interactions 
when the solution derived in /4/ for (yc>go)is valid. The equation of the set of such curv- 
es (regularity boundaries) is of the form 

,2( = (1 +- [(x + 1) / (x - l)l"~)":, B = s / 2 

These lines may be, also, conveniently considered in coordinates h,h, which represent 
ratios of velocities i? and Wto the critical speed of sound in the unperturbed gas upstream 
of the shock wave. The regularity boundaries are shown in Fig.5 by medium heavy solid lines. 
Curves 1-8 correspond to angles p = 0, 40, 60, 80, 90, 100, 120, 180;. In the &I, coordinat- 
es they all issue from one point (Fig.S,b), while in the M, M, coordinates they have a 
vertical asymptote M == {I + I(x -c 1) / (x - 1)1'/*)'12 (Fig.S,a). The regions that correspond to 
irregular interactions are to the right of these curves. 

3. The range of input parameters for possible types of flow. various flow 
modes may be generated depending on the values of input parameters ill, MI, ) and p (Figs. 1 
-3). To each of these corresponds in the coordinate plane M,A!f, and h,li, acertainregion 
dependenton 6 as on a parameter. The obtained in Sect.2 regularity boundaries enable us to 
determine which of these modes are accompanied by regular and which by irregular shock inter- 
actions. 

The described analysis is bounded by the condition that VI"> a, which ensures the exist- 
ence of the Mach cone, and which can be expressed in the form of the inequality 

IV, > ill'," = c sin fi - M cos p 13.1) 

It can be also shown that 
a) the wedge velocity relative to the gas downstream of the shock wave is supersonic, i.e. 
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b 

V,>at , if 

Fig.5 

hf, > ,%I~’ = (1 -- M,cos fi) a, / a, (3.2) 

b) for fi>s/2 the angle fi - p between vector VI” and the wedge edge is smaller than 
n/2 , when 

M, < :]lzJ = [2 (n/r2 - 1) sin" fi - (x + 1) WI /1(x + 1) Af cos fi1 (3.3) 

c) when p-p> x/2, i.e. M, > iM$ , condition Xl< so is satisfied if 

M, > My = -(2W - 1) cos p / 111 (3.4) 

The last condition means that the weak shock induced by the supersonic motion of the 
wedge in the gas in region (1) is tangent to the OD'I part of the Mach cone surface (Fig.3). 

The comparison of (3.1) and (3.2) shows that ME’< A@ and that equality is reached 
only when M = M, , where 

M* = (12 - (x - 1) cos* PI/ 12x cos’ fi - (x - 1)1)'/* 
(3.5) 

On the other hand, VI" and V, can be simultaneously equal to the speed of sound al only 
when vector VI” This means that ME’= ME’= 

M?’ when 
is normal to the edge, i.e. when fi-- p = n/2. 

M = M,; moreover, it follows from formula (3.4) that then MZ’ is of the same 
magnitude, i.e. 

M$ zz ME'= ME' = ME' = (2j$12 - I)mj ,$f when il4= M* 

Parameter M* varies from 1 to 00 as p increases in the range 

n - arctg I(x f 1)/(x - I)]‘/? < B < X (3.6) 
In Fig.5 the dash line defined by the equation M, = ME)(M) corresponds to the condition 

of equality of V, to the speed of sound, the dash-dot line Al =ME’(M) corresponds to the 
condition of perpendicularity of vector VI” to the edge, and thz thin continuous line issuing 
from the point M, = M$(M) common to all curves corresponds to the condition x,, = r1 .The 
heavy solid line defines the lower boundary of possible values of M, (or A_) provided it is 
not equal unity. Curves 1-8 relate to angles p = 0, 40, 60, 80, 90, 100, 120, 180". 

If @ is fixed so as to satisfy condition (3.6) (or 112.2' </3<180" with x=1.4), then 
the three curves M:‘(M), ME’(M), ME’(M) have a common point, with the first two tangent to 
each other (the second, the dash line curve always lies above the first) and are intersected 
by the third (the dash-dot) line that corresponds to condition S - p= 90" (in Fig.5 this 
corresponds to angle f?! = 120"). Since for p - LL, 90" (i.e. above the dash-dot line) sub- 
sonic cases are not considered, hence the lower boundary of possible values of numbers M, 
(the heavy line) for A'> jl/I, is defined by the equation M, = MC’ and for M < M,, by 
the equation #/I, = Mbf) , since then p - p ( 90” . The region between the heavy and the 
dash lines corresponds to the subsonic case (Fig.2) the region between the dash and the dash- 
dot lines to the supersonic case (Fig.l,a), that between the dash-dot and the continuous thin 
lines to the case of fi -~>90" (Fig.3), and that between the thin continuous and the heavy 
lines corresponds to the reflection of a weak shock from the back of the shock wave (Fig.4,d). 
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As 6 increases the common point of these curves approaches the point at coordinates 
M, = ill = 1 (h, = h= I). Angle 6 = 180" corresponds to the plane problem of shock wave 
diffraction on an overtaking thin wedge and the entire heavy line is defined by the equation 

M, =.@’ , which means that the wedge velocity relative to the gas downstream of the shock 
wave must be supersonic. The region between the heavy and thin lines corresponds to cases of 
refraction of a weak shock in region (11 from the shock wave downstream of it, while the re- 
gion to the left of the thin line corresponds to a flow without such reflection. 

If angle 6 is contained in the interval (n - arctg V(X t_ 1)/(x - 1); nj2), the inequal- 
ities M$<Jl~'< J%@< Mg' are satisfied for all M. Hence the entire heavy line is de- 
fined by the equation M, = ‘W!? and the thin line is absent, i.e. there is no reflection 
of a weak shock from the shock wave downstream of it for these values of angle 6 (in Fig.5 
the angle 6 = 100" is within that interval). 

If arctg I/(x+1)/(x-1)<6<n/2 (or 67.8"<6<90" with x = 1.4), the dash-dot 
line is absent, i.e. always 6--p< 90". 

It should be noted that in all so far described cases the medium heavy solid line (the 
regularity boundary) and the heavy line issue from the same point #at corresponds to h!f, = 1, 
and the first of these is always to the left of the second. 

If arccosy'x(x - 1) 12 < 6 < arctgd(x -+- i)/(x - 1) (or 38.0"( 6 (67.8" with x= 1.4) ,the 
condition IV,>@ 
M'z' is satisfied, 

is satisfied for any M,>1 and, depending on whether condition Mm> 
either the supersonic (Fig.l,a) or the subsonic (Fig.2) case obtains. In 

Fig.5 angle 6 = 60" corresponds to this interval, but because in this case M!$ exceeds unity 
only at very high numbers M (higher than approximately 401, the dash line defined by the 
equation M, = M!$ is not shown. 

Finally, when O( $< arccos~x(x -I)/2 the supersonic case obtains for any number M. 
If the number 'L>z, then at fairly high numbers M the number @)>i for any angle 6, 

i.e. we have the subsonic case when M, satisfies the condition l<M,<bf~~. 

4. The boundary value problem (the supersonic case). The dimensionless pertur- 
bations of pressure p, density p, and the velocity vector components u and v along the r- 
and y-axes are defined by formulas /4/ 

B - PI p=_ 
SPlQl% ' 

p=q’ UZ-z..."-, 
I 

ye--- 
ea,wsa eo*cesa 

in which ir‘, is, 5, and i are dimensional quantities inside the perturbation cone, and PI? PlV 
and a, in regibn (1). 

The system of equations of gasdyanics for P, P* u, and v in the considered here three- 
dimensional problem coincide, after passing to self-similar variables and linearization, with 
the system of equations for the respective plane nonstationary problem /2/. After the elimina- 
tion of p,u, and U, this system reduces to an equation.of the elliptic type for function 
p in the region IBIIFI, Along arc sections IB and 3D the pressure is constant: p =0 

on IB and p=ps on BI), and 

condition aplay =6/2/mustbesatisfiedalongsection DF:of the boundary. 
Linearization of the laws of conservation at the shock wave whose front equation s=x, + 

effy) yields +he following formulas for functions u, V, and p along section FI of the 
boundary of region IBDFI: 

U = g, (f - !_/f’) f he (YC - it), u = &f’ + ‘k@ (YG -- b% p = g, (1 - f/f') +v (YG - Y) (4.2) 

These formulas, after the elimination of function f yield the following relationship be- 
tween perturbations of velocity and pressure components: 

u = Ap --t (h, - Ah,) ZE (yc - Y), ;; B 8P _=----- 
I/ dv 

(h,-++Y-YG) 
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x+1 B=--2- w--i i 
2+(x--i)M’ c&p 

where (6 (Y - YG) is the delta function. 

As in the case of the plane problem worked-out in /l/, formulas (4.3) yield the bound- 

ary condition for function p when x=x0; they differ only by the sign of the delta func- 

tion in formula (2.2) in /6) in which ~0 is to be substituted for m. 

The second of formulas (4.3) yields, after integration along the front, as in the plane 

problem, the following normalization condition: 

” B ap s y+y=b-hp+V., V, = (MICM p + Mocam / al + M,6/ e) set a 

0 

(4.4) 

where the integral is taken in the meaning of its principal value. 

Since in the supersonic case the form of the triangular region IBDFI, as well as the 

formulated in it boundary value problem for function p are of a form analogous to those in 

the plane problem of diffraction, hence the solution must be of the same form as that obtain- 

ed in /l/. Final formulas for pressure distribution p(z) on the wall and P (y) along the 
shock front are the same as formulas (4.1) and (4.2) in /l/, except that the quantity K, is 

altered to 
B 

( 

s 
%=-G hp+& - Ml$+Mleos+ca ( 

These formulas are written on the assumption that yl, v,>)/% which in the plane probl- 

em could only be violated when x >Vr , while in the presence of a side slip angle this can 

occur for any x. In such case, for example of V*<VF, the alterations indicated in 

Sect. 4 of /l/ must be carried out. This applies also when yl< v/z. 

The singularities of pressure distribution along the shock front which were discovered in 

the plane problem, i.e. the finite discontinuity and the logarithmic singularity of function 

p at point G, apparently characteristic of the irregular interaction of a weak shock with 

a shock wave of finite intensity, are present in the considered here three-dimensional flow. 

As already indicated in Sect.1 when the angle fi-_p>n/2 I reflection from the shock 

wave of a weak shock induced by the motion of a wedge in the gas downstream of the shock wave, 

is possible; the reflected front is then tangent to the Mach cone. In this case the pattern 

of flow in the z, y-plane (Fig.l,d) contains a new region (6) bounded by the reflected shock, 

the shock wave, and arc IB1; the coordinates of point B,(z,, yI) are determined by formulas 

21' = 
=O-uyL~u~*-~yo' l--z1l, 

"o'+uL~ I YL= v-i 3 y,’ = )/r=q 

The perturbation of pressure ps in that region can be determined using the previously 

obtained coefficient of reflection of a weak wave from a shock wave of arbitrary intensity 

(see /7/j. It is necessary to substitute ps-p6 for ps in coefficients c5 and cI in 

formulas (4.1) and (4.2) of /l/, and to add to the right-hand side of the expression for pres- 

sure perturbation p(y) along the shock front the quantity pI as an addend. 

5. The shape of the shock front. The third of conditions (4.2) makes it possible 

to determine, after the substitution into it of function P (Y) r as defined by formula (4.2) 

in /l/, function f(y) as the solution of an ordinary differential equation with the condition 
that f= 0 when Y = Yom That solution is represented by the right-hand side of formula(5.2) 

in /l/ multiplied by co9 a /cos p. 

In the case of inner reflection of a weak shock from a shock wave, mentioned at the end 

of Sect-Q, the latter is deflected along section LI (Fig.4,d) from its unperturbed position 

as the result of wave interaction; the boundary condition for function f(y) at point y, al- 

so changes. Using the third of formulas (4.2) it can be written as 

x+1 msa =oo 
f(Yo)=-~~,~~(i-~) 

me quantity f (yo) must be added to the right-hand side of formula (5.2) in /l/ after 

its mulitiplication by cosafcos~. 

Function f(y) defines the shock wave shift from its unperturbed position in the z,y- 

plane in which the investigation is carried out, That shift is not the same as its deflection 

along the normal to the unperturbed front position, which is obtained from f(y) by multiply- 

ing it by ctg a / co5 p. 

6. The motion in which the edge is inside the Mach cone. In conformity with 
Sect.1 in the subsonic case only the NP part of boundary DF belongs to the wall (Fig.rl,b), 

and the coordinate of point N on the z-axis is determined by the formula 
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Q (0 - PI co.5 R 
z,v = - -.= - ~ tS (1 cos (P - p) 

It is convenient to separate, as in /3/, the unknown function pintwo,viz.,p '=lla~- I),x,so 

that P.5 is symmetric and pu antisymmetris relative to the axis y 0. The derivationofsolu- 

tion for function pn is carried out as in /3/; the distribution of PC, along the wall is de- 

fined by formula (64) in /3/. Function ps is zero along the Mach arc ID and along section 

DF satisfies the condition @&ldy X,~U,*~ fi (z - xx). U,L, d = (.II,cos f3 L .Il,a, / Ui) set a 

Instead of P6 in coefficients 

function ,> in Sect.4 andthe 
normalization condition (4.4) 

is to be substituted 

for It can be shown that 
the distribution of ps along 

the wall and the shock front 

is obtained from formulas (4.1) 
and (4.2) in /l/ by carrying 

out in terms with coefficients 

the following 
substitutions: Arth for arctg, 

C'Z -yy3 for 1'3 - f/2, r/~Z - \)4 for 

n 025 0.5 0.7s F 0.25 0.5 0.75 I 
Y:? for y:r' - Z,with 

I' u' 
,,3? 1! (I,, - .r.v)Z / (1 - .r,,lV)". 

('n and C.t we must have now the quantity (-_s~u,'/ 1 1 -J,,$). 

Thus in the subsonic case the pressure on the wall has at point N a logarithmic singular- 

ity, as well as a stronger singularity (when S#O) of the type l/vE as + 0. Pressure 

along the shock front has at point G the same singularities as in the supersonic case. 

7. Results of calculations. The dependence of pressure on the wall on coordinate 

.z* = (1 + 2) i (1 +&I) , and of pressure along the front and the shape of the front on coordinate 

Y' = Y/ Y0 is shown in Figs.6and7, where the front shape is given by the heavy line, and all 

curves have been calculated for x = 1.4. 

The effect of the side slip angle fl on pressure distribution at the wall (the left-hand 

part of the diagram), and along the front, as well as on the front shape is shown in Fig.6 for 

the case of M= M,= 5, 6=0. Curves l-5 correspond, respectively, to angles p = 0,40, 60, 100, 

120°. For larger angles b the intersection line of fronts approaches the wall, inducing 

an increasing slope of curves along the part of the wall adjacent to the shock wave. 

Figure 7 corresponds to the plane problem when angle b= s, which is the particular case 

of the flow taking place as the result of a thin wedge moving at supersonic velocity reaches 

the shock wave front from behind. In this case M = 1.5, 6 = 0. The respective Mach numbers 

M, appear above each curve. When M-=8, the triple point (; is very close to the point 

I(y,' = 0,995) , because of this the right-hand branch of the curve of pressure distribution al- 

ong the front, which vanishes at point I and moves to infinity at point G , is not visible 

in the diagram. When Mm=%0 the wave interaction is regular and the curve representing pres- 

sure along the front, is continuous. 
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